• K.V. Storozhenko A.A. Bogomolets National Medical University
Keywords: genes, environment, progenic forms of bite.


The development of dental-maxilla apparatus, as well as the development of other organs, is influenced by two main groups of factors: internal (genotype) - this factor seeks to realize inherent in the development programme of the authority with the smallest possible number of deviations, depending on various extraneous influences, and external factors physiological and pathogenic. These factors are aimed at changing body that grows in accordance with the external conditions. The effect of physiological factors wearing corrective, guiding character, and the action of pathogen - deforming, destructive. The interaction of these two groups determines the final outcome is a phenotype [1-3].

Genetic and environmental factors play an important role in the etiology of malocclusion, while the final phenotypic expression is the result of the influence of both these factors, the undeniable proof is a genetic influence on the majority of dental and occlusal variations [4].

Merging into one group of physiological and pathogenic factors is due to the fact that clear boundaries between them often do not exist. Depending on individual sensitivity to specific factors, and quantitative characteristics of its physiological role can be transformed into pathogenic. The groups of external factors capable of carrying out physiological or pathological effect on the development of dentoalveolar apparatus can be summarized as follows: functional factors (poor oral pathology of muscles of the maxillofacial region), the impact of various diseases (rickets, etc.), environmental and external influences. Almost always there are several factors that determine each other and thus connected into a single pathogenetic chain. Typical malocclusions are a typical example of the interaction of hereditary factors and the influence of environmental factors [5, 1, 2, 6].

In this respect, a clear example of progenic forms occlusion. Occurrence is divided into acquired and congenital. The latter, in turn, are divided into hereditary and non-hereditary. Almost 17-21% of all registered anomalies of the jaw complex are genetically were determined, others can be considered acquired [7]. Hereditary malocclusion is observed in several generations, with "transmitted" complete or partial syndrome of characteristics. Congenital not hereditary progeny, according to many scientists, arise as a result of mechanical factors, in particular in the embryonic period of development, abnormal position of the fetus, during birth, toxoplasmosis, etc.

Today, there are numerous molecular-genetic studies to find possible candidate genes involved in the formation progenic forms of occlusion. Progress in molecular biology, as emphasized by the authors, has allowed the recognition of different genes involved in the growth of the lower jaw. A large number of genes described as key regulatory factors contributing to the growth of condyle (articular head) under the action of mechanical stress, and these genes may play an important role in the development of "Class III" malocclusion. Recent genetic studies using analysis of coupling and associative studies have extended the range of genes responsible for the formation of "Class III" malocclusion. Recent studies have reported that genes that encode specific growth factors or other signaling molecules are involved in condylar growth under mechanical strain. These genes, which include Indian hedgehog homolog (IHH), parathyroid-hormone like hormone (PTHLH), insulin-like growth factor- 1 (IGF-1), and vascular endothelial growth factor (VEGF), and variations in their levels of expression play an important role in the etiology of "Class III" malocclusion.

The polygenic nature of inheritance, to search for new candidate genes, leads to use modern molecular genetic technologies, in particular GWAS (Genome-Wide Association Study) for genome wide Association studies, which is a new and very powerful tool that scientists beginning to use for identify a genetic contribution to the phenotype [6].

Thus, the "Class III" malocclusion is the result of several factors interacting in morphogenetic period of development of the lower jaw, and you can adjust some of these factors in childhood. Based on this, provides a better understanding of the genetic changes, which in some way lead to the phenotype of Class III that requires the need to develop new strategies for the prevention of this condition. Such approaches will allow the doctor to choose early and timely oral and maxillofacial and orthodontic treatment aimed at preventing the development of "Class III" malocclusion. Therefore, further research in this direction remain very relevant.


Download data is not yet available.


1. Григорьева Л.П. Этиология и патогенез аномалий прикуса у детей: методические указания. – Полтава, 1992. – 24 с.

2. Мак-Дональд Р.Е. Стоматология детей и подростков / Мак-Дональд Р.Е., Эйвери Д.Р. ; пер. с англ. под ред. проф. Т.В. Виноградовой.- М., 2003.- С. 94-154.

3. A Genetic Study of Class III Malocclusion / Litton S.F. [et al.] // Am. J. Orthod. Dentofacial Orthop.- 1970;58:565-577.

4. Genetic Basis of Dental Disorders / Rishi Tyagi [et al.] //A Review, Journal of Oral Health & Community Dentistry.- October, 2008;2(3):55-61.

5. Криштаб С.И. Аномалии нижней челюсти / С.И. Криштаб.- К.: Здоровье, 1975.- 102 с.

6. Xue F. Genes, Genetics and Class III Malocclusion / Xue F., R.W.K. Wong, A.B.M. Rabie // Orthad. Craniofac. Rex.- 2010; 13: 69-74.

7. Skaloud F. Dilci funkeni nehylky orofacialni soustavy / F. Skaloud // Czecoslov. Stomat. – 1974.- Vоl. 74, N5.- Р. 335-339.

8. Проффит У.Р. Современная ортодонтия ; пер. с англ. под ред. чл.-кор. РАМН, проф. Л.С. Персина. – М.: МЕДпресс-информ, 2006.- С. 16-17.

9. Korkhaus G. Antropologie and ogontologie studies of twins / G. Korkhaus // Int. J. Orthod. – 1930.- Vоl. 16.- S. 640-647.

10. Schulze Chr. ZurVererbung der Progenie / Schulze Chr., Wiese W. // Fortschribtbe der Kieferthop?die. – 1965.- Bd. 26, №. 2.- S. 215-229.

11. Ellis E. Components of adult class 3 malocclusion / Ellis E., McNamara J.A. // J. Oral. and Maxillo. Facial. Surg.- 1984;42:295-305.

12. Дейвид Бикслер. Клиническая генетика в стоматологической практике : Стоматология детей и подростков / Дейвид Бикслер, Джеймс К. ; под ред. Ральфа Е. Мак-Дональда, Дейвида Р. Эйвери; пер. с англ. под ред. проф. Т.В. Виноградовой.- М., 2003.- С. 94-115.

13. Lundstrom A. Tooth size and occlusion in twins. Stockholm, 1948, A.B. Falcrantz Boktryckeri. American Journal of Orthodontics, Vol. 35, Is. 11, Nov. 1949, P. 878-879.

14. Kraus B.S. Heredity and the craniofacial complex / Kraus B.S., Wise W.J., Frei R.A. // Am.J.Orthod. 45: 172-217, 1959.

15. Лобзин О.В. Особенности прикуса у близнецов в связи с функциональной асимметрией организма: дис. … канд. мед.наук / О.В. Лобзин. – М., 1968. – 24 с.

16. Bouchard T.J. Source of human psychological differences: The Minnesota study oftwins reared apart / Bouchard T.J., Lykken D.T., Mcgue M. // Science.- 1990; 250:223-28.

17. Watanabe M. Mandibular prognathism in Japanese families ascertained thorough orthognathicalli threated patients / Watanabe M., Suda N., Ohyama K. // Am. J. Orthod Dentofacial Orthop. - 2005; 128: 466 – 70.

18. Schulze C., Wiese W. On the heredity of prognathism [Zur Vererbung der Porgenie] Fortschritte Der Kieferorthopadie, (1965).26(2), 213-229.

19. Wolff G. On the genetics of mandibular prognathism: analysis of large European noble families / Wolff G., Wienker T.F., Sander H. // J. Med. Genet.- 1993; 30: 112-6.

20. Segregation analysis of mandibular prognathism in Libya / El-Gheriani A.A., Maher B.S., El-Gheriani [et al.] // J. Dent. Res. - 2003; 82:523-7.

21. Major gene and multifactorial inheritance of mandibular prognathism /Cruz R.M., Krieger H., Ferreira R. [et al.] // Am. J. Med. Genet A.- 2008; 146:71-7.

22. Зволинская А.М. Приобретенные и врожденные факторы в развитии прогенических форм прикуса: дис. … канд. мед.наук / А.М. Зволинская. –К., 1978.-28 с.

23. Мирза А.И. Роль генетических факторов в формировании мезиального прикуса / А.И. Мирза, А.М. Зволинская, А.В. Коблянская // Современная стоматология. – 2004. - №3. - С. 133-136.

24. Smith R.J. Problems and methods in research on the genetics of dental occlusion / Smith R.J., Bailit H.L. // Angle Orthodontics.- 1977; 47:65-77.

25. Hoffendahl. Систематическая классификация челюстных форм и положения зубов. Одонтологическое обозрение. – 1914, № 9-10. – С. 880.

26. Emrich R.E. Prevalence of Class I, Class II, epidemiological study / Emrich R.E., Brodie A.G., Blayney // J. Dent Res.- 1965; 44: 947-53.

27. Staudt C.B. Different skeletal types underlying Class III malocclusion in random population / Staudt C.B., Kiliaridis S. // Am. J. Orthod. Dentofacial Orthop. - 2009; 136:715-21.

28. Yamaguchi T. Genome-wide linkage analysis of mandibular prognathism in Korean and Japanese patients / Yamaguchi T., Park S.B., Narita A. // J. Dent. Res.- 2005. - Vol. 84, No.3.- Р. 255-259, ISSN 0022- 0345.

29. Evidence of linkage in a Hispanic cohort with a class III dentofacial phenotype / Frazier-Bowers S., RinconRodriguez R., Zhou J. [et al.] // J. Dent. Res. - 2009.- Vol.88 (1): 56–60.

30. Pei M. Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins / Pei M., Luo J., Chen Q.// Osteoarthritis Cartilage. - 2008; 6: 1110-1117.

31. Quantitative trait loci on chromosomes 10 and 11 in?uencing mandible size of SMXA RI mouse strains / [Dohmoto A., Shimizu K., Asada Y., Maeda T.] // J. Dent. Res. - 2002; 81: 501–4.

32. Xue F. Identification of SNP markers on 1p36 and association analysis of EPB41 with mandibular prognathism in a Chinese population / Xue F., Wong R., Rabie A.B. // Arch. Oral. Biol. - 2010. - Vol. 55(11): 867–872.

33. Branchial HOX gene expression and human craniofacial development / Vieille-Grosjean I., Hunt P., Gulisano M. [et al.] // Dev. Biol. - 1997; 183: 49–60.

34. Reduced amounts of cartilage collagen ?brils and growth plate anomalies in transgenic mice harboring a glycine-to-cysteine mutation in the mouse type II procollagen alpha 1-chain gene / Garofalo S., Vuorio E., Metsaranta M. [et al.] // Proc. Natl. Acad. Sci. USA. - 1991; 88: 9648–52.

35. Simmons K.E. Growth hormone and craniofacial changes: preliminary data from studies in Turner’s syndrome / K.E. Simmons // Pediatrics.- 1999. - Vol. 104, No.4, pp. 1021-1024, ISSN 0031-4005.

36. Funatsu M. Effects of growth hormone on craniofacial growth / Funatsu M., Sato K., Mitani H.// Angle Orthod.- 2006. - Vol. 76, No. 6, pp. 970–977, ISSN 0003-3219.

37. Tomoyasu Y. Recent Advances in the Genetics of Orthodontics. Principles in Contemporary Orthodontics / Tomoyasu Y., Yamaguchi T., Maki K.; Dr. Silvano Naretto (Ed.), (2011). ISBN: 978-953- 307-687-4. 569-584.
How to Cite
Storozhenko, K. (2018). THE ROLE OF GENES AND ENVIRONMENT IN THE DEVELOPMENT OF PROGENIC FORMS OF BITE (REVIEW). Ukrainian Dental Almanac, 1(1), 112-118. Retrieved from