SINGLE-NUCLEOTIDE POLYMORPHISMS OF THE ESR1 [RS 2234693], IL-1 [RS1143627], RANKL [RS9594738] AND [RS9594759] GENES AS POSSIBLE RISK MARKERS FOR VARIOUS VARIANTS OF THE COURSE OF PERIODONTAL DISEASE IN PATIENTS BORN MACROSOMIC

  • O.V. Garmash Kharkiv National Medical University, Kharkiv, Ukraine
Keywords: fetal macrosomia, periodontal disease, genetic polymorphisms: ESR1 [rs 2234693], IL-1 [rs1143627], RANKL [rs9594738], [rs9594759].

Abstract

The article is concerned with the research for genetic predictors of periodontal tissue diseases in individuals born to macosomіс.

Purpose of this study is to identify the association between the polymorphic variants of the CYP19A1 [rs2414096, rs936306], ESR1 [rs2234693, rs9340799], IL-1b [rs1143627], IL-6 [rs1800796], IL-10 [rs1800896], RANKL [rs9597575] and VDR [rs 1544410, rs10735810] genes and the formation of periodontal tissue disorders with a predominance of inflammatory (periodontitis) or dystrophic (paradontosis) flow patterns in of Kharkiv and the population of adjacent district who were born by macrosomic delivery.

Object and Methods. The molecular genetic method was used to examine 81 persons of different ages (from 18 to 55 years old) who live in the Kharkiv and adjacent districts (Ukraine). The participants in the study were divided into 3 groups. The pathological changes in periodontal tissues were recorded by the classification of periodontal diseases (M.F. Danylevskyi, 1994).

The macrosomic-at-birth participants who were diagnosed with chronic periodontitis (of the initial, first, or second degree) were assigned to the general group with a predominance of inflammatory processes in periodontal tissues. The macrosomic-at-birth participants who were diagnosed with parodontosis (of the initial, first or second degree), were assigned to the general group with a predominance of dystrophic processes in periodontal tissues. The comparison group consisted of the individuals with a conventionally healthy periodontium.

The DNA was isolated from the buccal epithelium. The genotyping of SNP was carried out by Real-Time PCR.

Conclusions. 1. The risk of dystrophically-inflammatory diseases of periodontal tissues with prevalence of both dystrophic (parodontosis) and inflammatory (periodontitis) flow patterns is associated with variants of the IL-1b gene: [rs1143627] (an over-dominant model of inheritance) in individuals born macrosomic. 2. The protective effect during periodontal tissue diseases with a tendency to inflammatory course was associated with the ESR gene variants [rs 2234693] (recessive model of inheritance) and IL-1b [rs1143627] (dominant and multiplicative model of inheritance). 3. A more pronounced effect of the IL-1b gene variant: [rs1143627] on the development of processes with a tendency to inflammatory course in the periodontal tissues (additive, dominant, over-dominant and multiplicative models of inheritance versus over-dominant model of the tendency to dystrophic flow) was recorded. 4. The risk of developing of pathological processes in periodontal tissues with a tendency to a dystrophic course rather than to an inflammatory course, associated with the RANKL [rs9594738] gene variants (dominant and multiplicative models of inheritance) and RANKL [rs9594759] variant (dominant model of inheritance). 5. Analysis of variants of the ESR1 [rs 2234693], IL-1b [rs1143627] and RANKL [rs9594738], [rs95944738], [rs95944738] gene variants is proposed to be used for DNA diagnostics at the preclinical stage of the disease in order to highlight the risk group for the development of periodontal tissue disorders and increase the effectiveness of personalized preventive measures in individuals born macrosomic.

Downloads

Download data is not yet available.

References

Marciniak A, Patro-Małysza J, Kimber-Trojnar Ż, Marconian B, Oleszczuk J, Leszczyńska-Gorzelak B. Fetal programming of the metabolic syndrome. Taiwan J Obstet Gynecol. 2017 Apr;56(2):133-138. DOI: 10.1016/j.tjog.2017.01.001.

2. Littner Y, Mandel D, Mimouni FB et al. Decreased bone ultrasound velocity in large-for-gestational-age infants. J Perinatol. 2004;24(1):21–3. DOI: 10.1038/sj.jp.7211013.

3. Hermann GM, Dallas LM, Haskell SE, Roghair RD. Neonatal macrosomia is an independent risk factor for adult metabolic syndrome. Neonatology. 2010; 98: 238-44. https://doi.org/10.1159/000285629.

4. Gu S, An X, Fang L, Zhang X, Zhang C, Wang J, et al. Risk factors and long-term health consequences of macrosomia: A prospective study in Jiangsu Province, China. Journal of Biomedical Research. 2012 Jul; 26(4): 235-40. https://doi.org/10.7555/JBR.26.20120037.

5. Garmash O. Dependence of Deciduous Tooth Eruption Terms and Tooth Growth Rate on the Weight-Height Index at Birth in Macrosomic Children over the First Year of Life. Acta Medica (Hradec Králové) 2019; 62(2): 62–68. DOI: 10.14712/18059694.2019.48.

6. Yokomichi, H, Tanaka, T, Suzuki K, Akiyama T, Okinawa Child Health Study Group, Yamagata, Z. Macrosomic Neonates Carry Increased Risk of Dental Caries in Early Childhood: Findings from a Cohort Study, the Okinawa Child Health Study, Japan. PLoS ONE. 2015 Jul; 10 (7): e0133872. DOI: 10.1371/journal.pone.0133872.

7. Julihn, A, Molund U, Drevsäter E, Modéer T. High birth weight is a risk factor of dental caries increment during adolescence in Sweden. Dentistry Journal. 2014 Nowember; 2(4): 118–133. https://doi.org/10.3390/dj2040118.

8. Garmash OV. Stan stomatohnatychnoi systemy osib populiatsii kharkivskoi oblasti ta prylehlykh oblastei, yaki narodylysia makrosomamy. [State of the stomatognatic system in the kharkiv region and the adjacent areas population, born macrosomic]. «Vistnyk problem biolohii i medytsyny». 2019; 3(152): 347-359. DOI:10.29254/2077-4214-2019-3-152-347-359. [Ukrainian].

9. Yakovtsova AF, Sorokina IV, Aleshchenko IE. Imunnaya sistema ploda cheloveka pri krupnoplodii i ZVRP [Immune system of the human fetus in large and IUGR fetuses]. Kharkov: BSF "Antiqua"; 2004. 218 s. [Russian].

10. Garmash OV, Gubina-Vakulik GI. Stan pulpy, tverdykh tkanyn zubiv ta tkanyn parodonta u dvanadtsiaty- ta visimnadtsiatymisiachnykh shchuriv, yaki narodylys iz makrosomiieiu. Ukrainskyi zhurnal medytsyny, biolohii ta sportu. 2020;5(3): 43-49.

11. Гармаш О. В., Губіна-Вакулік Г. І. Стан пульпи, твердих тканин зубів та тканин пародонта у трьох- та шестимісячних щурів, які народились із макросомією. Вісник проблем біології і медицини. 2019; 4 (2). 365-372. DOI:10.29254/2077-4214-2019-4-2-154-365-372.

12. Tebloyeva LM. Gurevich KG. Osteoimmunologiya i parodontit. Patologicheskaya fiziologiya i eksperimentalnaya terapiya. 2014;3:67-72. DOI: https://doi.org/10.25557/0031-2991.2014.03.67–72. [Russian].

13. Parakhonskiy. AP, Perova NYu. Rol tsitokinov v patogeneze parodontita Estestvenno-gumanitarnyye issledovaniya. 2015; 7:75–81. [Russian].

14. Zhao S, Kato Y, Zhang Y, Harris S, Ahuja SS, Bonewald LF. MLO-Y4 osteocyte-like cells support osteoclast formation and activation. Journal of Bone and Mineral Research. 2002;17(11):2068–2079. DOI: 10.1359/jbmr.2002.17.11.2068.

15. Vavilova TP. Pashkova GS. Grinin VM. Issledovaniye rastvorimogo osteoklastaktiviruyushchego faktora i osteoprotegerina v smeshannoy slyune patsiyentov s parodontitom. Rossiyskiy stomatologicheskiy zhurnal. 2010;2:11-14. [Russian].

16. Melnychuk HM, Politun AM, Kovalchuk LIe, Ersteniuk HM. Alhorytm vynyknennia y rozvytku heneralizovanoho parodontytu ta parodontozu skhema kompleksnoho likuvannia heneralizovanoho parodontytu. Sovremennaia stomatolohyia. 2013;1:35-40. Available from: http://nbuv.gov.ua/UJRN/ss_2013_1_10. [Ukrainian].

17. Laine ML, Loos BG, Crielaard W. Gene Polymorphisms in Chronic Periodontitis Int J Dent. 2010 Feb; 2010: 324719. Doi: 10.1155/2010/324719.

18. Zhang Q, Chen B, YanF, Guo J, Zhu X, Ma S, et al. Interleukin-10 Inhibits Bone Resorption: A Potential Therapeutic Strategy in Periodontitis and Other Bone Loss Diseases. Biomed Res Int. 2014; 2014: 284836. DOI: 10.1155/2014/284836.

19. Atanasovska-Stojanovska A, Trajkov D, Popovska M, Spiroski M. IL10 -1082, IL10 -819 and IL10 -592 polymorphisms are associated with chronic periodontitis in a Macedonian population. Hum Immunol. 2012 Jul;73(7):753-8. DOI: 10.1016/j.humimm.2012.04.009.

20. Shetty S, Kapoor N, Bondu JD, Thomas N, Paul TV. Bone turnover markers: Emerging tool in the management of osteoporosis. Indian J. Endocrinol. Metab. 2016; 20: 846–852. DOI: 10.7860/JCDR/2018/37917.12389.

21. Wan QS, Li L, Yang SK, Liu ZL, Song N. Role of Vitamin D Receptor Gene Polymorphisms on the Susceptibility to Periodontitis: A Meta-Analysis of a Controversial Issue. Genet Test Mol Biomarkers. 2019 Sep;23(9):618-633. DOI: 10.1089/gtmb.2019.0021.

22. Mashhadiabbas F, Neamatzadeh H, Nasiri R, Foroughi E, Farahnak S, Piroozmand P, et al. Association of vitamin D receptor BsmI, TaqI, FokI, and ApaI polymorphisms with susceptibility of chronic periodontitis: A systematic review and meta-analysis based on 38 case–control studies. Dent Res J (Isfahan). 2018 May-Jun;15(3):155-165.

23. Ejiri S, Tanaka M, Watanabe N, Anwar RB, Yamashita E, Yamada K, et al. Estrogen deficiency and its effect on the jaw bones. Journal of Bone and Mineral Metabolism. 2008 Febr; 26(5):409-15. DOI: 10.1007/s00774-008-0870-4.

24. Mullin BH, Zhu K, Xu J, Brown SJ, Mullin S, Tickner J, et al. Expression Quantitative Trait Locus Study of Bone Mineral Density GWAS Variants in Human Osteoclasts. J Bone Miner Res. 2018 Jun;33(6):1044-1051. DOI: 10.1002/jbmr.3412.

25. Zhang X, Dai J, Long Y, Wu H, Li X, et al. Correlation of estrogen receptor alpha gene polymorphisms and bone mineral density in Chinese women with chronic periodontitis. Chin Med J. 2010; 123(22): 3262- 3267.

26. Clarke GM, Anderson CA, Pettersson FH, Cardon LR, Morris AP, Zondervan KT. Basic statistical analysis in genetic case-control studies Nat Protoc. 2011 Feb; 6(2): 121–133. DOI: 10.1038/nprot.2010.182.

27. Rossokha ZI, Kyriachenko SP, Gorovenko NH. Porivnialna otsinka modelei henetychnoho ryzyku reproduktyvnykh rozladiv, zumovlenykh polimorfizmom heniv MTHFR, MTRR, MTR1. Medychni perspektyvy. 2018;23(2):85-91. Available from: http://nbuv.gov.ua/UJRN/Mp_2018_23_2_14.

28. Tobias JH, Steer CD, Vilarino-Güell C, Brown MA. Estrogen Receptor α Regulates Area-Adjusted Bone Mineral Content in Late Pubertal Girls. Journal of Clinical Endocrinology & Metabolism. 2007 Febr.;92(2):641-7. DOI: 10.1210/jc.2006-1555.

29. Zhou XG, Liu YZ, Li MX, Jian WX, Lei SF, Qin YJ et al. Parathyroid hormone gene with bone phenotypes in Chinese. Biochem Biophys Res Commun. 2003 Aug 1;307(3):666-71. DOI: 10.1016/s0006-291x(03)01261-0.

30. Xing L, He GP, Chen YM, Su YX. Interaction of interleukin-6 and estrogen receptor gene polymorphisms on bone mass accrual in Chinese adolescent girls. J Bone Miner Metab. 2008;26:493–498. DOI: 10.1007/s00774-007-0844-y.

31. Zhang L, Meng H, Zhao H, Li Q, Xu L, et al. Estrogen receptor-α gene polymorphisms in patients with periodontitis. J Periodont Res. 2004; 39(5): 362-366. DOI: 10.1111/j.1600-0765.2004.00736.x

32. He L, Cao X, Meng H, Li P, Chen Z, Sha Y., et al. Gene polymorphisms in related to both chronic periodontitis and type 2 diabetes mellitus. European Federation of Periodontology. Poster Abstracts. First published: 14 May 2012;14. DOI: 10.1111/j.1600-051x-2012.01891.x

33. Huang W, He BY, Shao J, Jia XW, Yuan YD. Oncotarget. 2017 May 9;8(19):31406-31414. DOI: 10.18632/oncotarget.15612.

34. Brodzikowska A, Górska R, Kowalski J. Interleukin-1 Genotype in Periodontitis. Arch Immunol Ther Exp (Warsz). 2019; 67(6): 367–373. Published online 2019 Jul 19. DOI: 10.1007/s00005-019-00555-4.

35. Majumder P, Panda SK, Ghosh S, Dey SK. Interleukin gene polymorphisms in chronic periodontitis: A case-control study in the Indian population. Arch Oral Biol. 2019 May;101:156-164. DOI: 10.1016/j.archoralbio.2019.03.015.

36. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, et al. Multiple genetic loci for bone mineral density and fractures. Engl J Med. 2008 May 29; 358(22):2355-65. DOI: 10.1056/NEJMoa0801197.

37. Zupan J, Mencej-Bedrac S, Jurkovic-Mlakar S, Prezelj J, Marc J. Gene-gene interactions in RANK/RANKL/OPG system influence bone mineral density in postmenopausal women. J Steroid Biochem Mol Biol. 2010 Jan;118(1-2):102-6. DOI: 10.1016/j.jsbmb.2009.10.013.

38. Garcia-Giralt N, Yoskovitz G, Rodriguez-Sanz M, Urreizti R, Sarrion P, Güerri R, et al. SNPS in the 3'utr of rank determine site-specific low trauma fractures independently of BMD. Rev Osteoporos Metab Miner [online]. 2013; 5(2):85-92. http://dx.doi.org/10.4321/S1889-836X2013000200005.

39. Maylyan EA. Assotsiatsii polimorfizma RS9594738 (C>T) gena TNFSF11 s osteoporozom v zavisimosti ot dlitelnosti postmenopauzy. Ulianovskiy mediko-biologicheskiy zhurnal. 2017;3:53-61. DOI: 10.23648/UMBJ.2017.27.7076.

40. Küchler EC, Schröder A, Corso P, Scariot R, Spanier G, Proff P, et al. Genetic polymorphisms influence gene expression of human periodontal ligament fibroblasts in the early phases of orthodontic tooth movement. Odontology. 2019 Nov 18. DOI: 10.1007/s10266-019-00475-x.

41. Roshandel D, Holliday KL, Pye SR, Boonen S, Borghs H, Vanderschueren D, et al. Genetic variation in the RANKL/RANK/OPG signaling pathway is associated with bone turnover and bone mineral density in men. J Bone Miner Res. 2010 Aug;25(8):1830-8. DOI: 10.1002/jbmr.78.
Published
2020-03-31
How to Cite
Garmash, O. (2020). SINGLE-NUCLEOTIDE POLYMORPHISMS OF THE ESR1 [RS 2234693], IL-1 [RS1143627], RANKL [RS9594738] AND [RS9594759] GENES AS POSSIBLE RISK MARKERS FOR VARIOUS VARIANTS OF THE COURSE OF PERIODONTAL DISEASE IN PATIENTS BORN MACROSOMIC. Ukrainian Dental Almanac, (1), 5-18. https://doi.org/10.31718/2409-0255.1.2020.01
Section
THERAPEUTIC DENTISTRY