ADDITIONAL CHARACTERISTICS OF HYBRID COMPOSITES FOR FILLING TEETH UNDER LOCAL MOUNTING CLOCKS

  • V.F. Makeev Lviv National Medical University named after Danylo Halytsky, Lviv, Ukraine
  • V.S. Kukhta Lviv National Medical University named after Danylo Halytsky, Lviv, Ukraine
  • O.S. Kyrmanov Lviv National Medical University named after Danylo Halytsky, Lviv, Ukraine
  • V.R. Skalsky Physics and Mechanics Institute named after G.V. Karpenka National Academy of Sciences of Ukraine, Lviv, Ukraine
Keywords: hybrid composites for filling, strength.

Abstract

For the rational use of materials, it is necessary to have data on their ability to resist deformation and destruction. In particular, in each case it is necessary to have information on the stiffness, strength and resistance to destruction of materials in the specified operating conditions of the elements. To determine such strength characteristics of the material, certain studies are carried out.

According to the analysis of literature sources in the study of dental composites mainly determine the tensile strength (bending) and compression [2-10], because it is subjected to restore materials during their operation in the oral cavity.

The purpose of the study is to conduct a comparative analysis of the strength of hybrid composites of domestic and imported production during their local loading: Latelux (Latus, Ukraine), TETRIC N-CERAM (Ivoclar Vivadent, Liechtenstein), CHARISMA CLASSIC (Kulzer, Germany).

To conduct research, 10 samples of each dental polymer composite were made. Packaging and molding of the material into a specially designed form was performed in laboratory conditions at an air temperature of 18 210 C with their subsequent polymerization with a LED photopolymer lamp Bluephase 20i (G2) (Ivoclar Vivadent). Before the test, the samples were kept for 24 hours at a temperature of 370 C in saline.

The samples were loaded on the SVR-5 installation using a ball indenter (ball diameter mm steel SHX15, modulus of elasticity GPa, Poisson's ratio) with a speed of 0.002 mm/s.

The purpose of the study is to conduct a comparative analysis of the strength of hybrid composites of domestic and imported production during their local loading.

According to the results of experimental studies on the load of PB fracture, the Charisma Classic composite (5.72 ± 0.16 kN) has the highest strength, Latelux (4.23 ± 0.53 kN) the lowest, and Tetric N-Ceram (5, 03 ± 0.71 kN) occupies an intermediate position. To move the indenter, we obtained the following order of materials (in ascending order): Latelux (0.94 ± 0.11 mm); Charisma Classic (1.02 ± 0.04 mm); Tetric N-Ceram (1.03 ± 0.17 mm).

Downloads

Download data is not yet available.

References

1. Nacional'nyj standart Rossijskoj Federacii. GOST R 56924-2016 (ISO 4049:2009). Materialy polimernye vosstanovitel'nye. [Internet]. Jelektronnyj fond normativno-tehnicheskoj i normativno-pravovoj informacii Konsorciuma 2013 [obnovleno 2017 Lip 01; citirovano 2021 Ser 12]. Dostupno: http://docs.cntd.ru/document/1200135162
2. Birjukova MM, Bardinova NA. Laboratornaja ocenka fiziko-mehanicheskih svojstv otechestvennogo fotokompozitnogo plombirovochnoho materiala «Lateljuks». Vіsnik stomatologії. 2009;1:303. (Russian).
3. Antunes PV, Ramalho A. Mechanical characterization of dental restorative composite materials. Materials Science Forum. 2004;455/456:393-7.
4. Ilie N, Hickel R. Investigations on mechanical behaviour of dental composites. Clin Oral Investig. 2009 Dec;13(4):427-38.
5. Díaz-Caballero A, Tarón-Dunoyer A, MartínezMartínez A. Data of resistance to the compression of restorative dental materials. Data Brief. 2019 Mar 6;23:103755.
6. Lerech SB, Tarón SF, Dunoyer AT, Arrieta JMB, Caballero AD. Compressive strength of glass ionomer and composite resin. In vitro study. Revista Odontológica Mexicana. 2017;21(2):e107-11.
7. Moezzyzadeh M. Evaluation of the compressive strength of hybrid and nanocomposites. Journal Dental School. 2012;1:24-9.
8. Jayanthi N, Vinod V. Comparative evaluation of compressive strength and flexural strength of conventional core materials with nanohybrid composite resin core material an in vitro study. J Indian Prosthodont Soc. 2013 Sep;13(3):281-9.
9. Al Badr R. M., Hassan H. A. Effect of immersion in different media on the mechanical properties of dental composite resins. International Journal of Applied Dental Sciences. 2017;3(1):81-8.
10. Della Bona A, Benetti P, Borba M, Cecchetti D. Flexural and diametral tensile strength of composite resins. Braz Oral Res. 2008 Jan-Mar;22(1):84-9.
11. Lawn BR, Deng Y, Thompson VP. Use of contact testing in the characterization and design of all-ceramic crownlike layer structures: a review. J Prosthet Dent. 2001 Nov;86(5):495-510.
12. Lawn BR, Deng Y, Miranda P. et al. Overview: damage in brittle layer structures from concentrated loads. J Mater Res. 2002;17(12):3019-36.
13. Peterson IM, Wuttiphan S, Lawn BR, Chyung K. Role of microstructure on contact damage and strength degradation of micaceous glass-ceramics. Dent Mater. 1998 Jan;14(1):80-9.
14. Rhee YW, Kim HW, Deng Y, Lawn BR. Brittle fracture versus quasi-plasticity in ceramics: a simple predictive index. J. Am. Ceram. Soc. 2001;84(3):561-5.
15. Rhee YW, Kim HW, Deng Y, Lawn BR. Contactinduced damage in ceramic coatings on compliant substrates: fracture mechanics and design. J. Am. Ceram. Soc. 2001;84(5):1066-72.
16. Miranda P, Pajares A, Guiberteau F. et al. Contact fracture of brittle bilayer coatings on soft substrates. J. Mater. Res. 2001;16(1):115-26.
17. Chai H, Lawn BR. Cracking in brittle laminates from concentrated loads // Acta. Mater. 2002;50(10):2613-25.
18. Tsai YL, Petsche PE, Anusavice KJ, Yang MC. Influence of glass-ceramic thickness on Hertzian and bulk fracture mechanisms. Int J Prosthodont. 1998 Jan-Feb;11(1):27-32.
19. Chai H, Lawn B. Fracture modes in brittle coatings with large interlayer modulus mismatch. J. Mater. Res. 1999;14(9):3805-17.
20. Shrotriya P, Wang R, Katsube N, Seghi R, Soboyejo WO. Contact damage in model dental multilayers: an investigation of the influence of indenter size. J Mater Sci Mater Med. 2003 Jan;14(1):17-26.
21. Jung YG, Wuttiphan S, Peterson IM, Lawn BR. Damage modes in dental layer structures. J Dent Res. 1999 Apr;78(4):887-97.
22. Zhao H, Hu XZ, Bush MB, Lawn BR. Cracking of porcelain coatings bonded to metal substrates of different modulus and hardness. J. Mater. Res. 2001;16(5):1471-8.
23. Dong XD, Darvell BW. Stress distribution and failure mode of dental ceramic structures under Hertzian indentation. Dent Mater. 2003 Sep;19(6):542-51.
24. Kim JH, Miranda P, Kim D K, Lawn BR. Effect of an adhesive interlayer on the fracture of a brittle coating on a supporting substrate. J. Mater. Res. 2003;18(1):222-7.
25. Chai H, Lawn B. Role of adhesive interlayer in transverse fracture of brittle layer structures. J. Mater. Res. 2000;(4):1017-24.
26. Lee CS, Kim DK, Sanchez J. et al. Rate effects in critical loads for radial cracking in ceramic coatings. J. Am. Ceram. Soc. 2002:85(8):2019-24.
27. Lee CS, Lawn BR, Kim DK. Effect of tangential loading on critical conditions for radial cracking in brittle coatings. J. Am. Ceram. Soc. 2001;84(11):2719-21.
28. Kim HW, Deng Y, Miranda P. et al. Effect of flaw state on the strength of brittle coatings on soft substrates. J. Am. Ceram. Soc. 2001;84(10):237784.
29. Wang Y, Darvell BW. Effect of elastic modulus mismatch on failure behaviour of glass ionomer cement under Hertzian indentation. Dent Mater. 2012 Mar;28(3):279-86.
30. Wang Y, Darvell BW. Failure mode of dental restorative materials under Hertzian indentation. Dent Mater. 2007 Oct;23(10):1236-44.
31. Tian KV, Nagy PM, Chass GA, Fejerdy P, Nicholson JW, Csizmadia IG, Dobó-Nagy C. Qualitative assessment of microstructure and Hertzian indentation failure in biocompatible glass ionomer cements. J Mater Sci Mater Med. 2012 Mar;23(3):677-85.
32. Skalskyi V, Makeev V, Stankevych O, Pavlychko R. Features of fracture of prosthetic tooth-endocrown constructions by means of acoustic emission analysis. Dent Mater. 2018 Mar;34(3):e46-e55.
33. Dentistry – Determination of the strength of dental amalgam by the Hertzian indentation strength (HIT) method [Internet]. Technical Committee ISO/TC 106/SC 1 Filling and restorative materials ISO/TS 20746:2016; 2016 [updated 2020; cited 2021 Aug 8]. Available from: https://www.iso.org/standard/68962.html
34. Mohandesi JA, Barzegaran V, Rafiee MA, Shafiei F. Compressive fatigue behavior of dental restorative composites. Dental Materials Journal. 2007;26(6):827-37.
35. Benetti AR, Peutzfeldt A, Lussi A, Flury S. Resin composites: Modulus of elasticity and marginal quality. J Dent. 2014 Sep;42(9):1185-92.
36. Bіrjukova MM. Porіvnjal'nij analіz vlastivostej novogo vіtchiznjanogo mіkrogіbridnogo plombuval'nogo materіalu dlja vіdnovnogo lіkuvannja/restavracії karіoznih defektіv zubіv. Ukraїns'kij zhurnal medicini, bіologії ta sportu. 2015;1:28-32. (Ukrainian).
Published
2021-09-22
How to Cite
Makeev, V., Kukhta, V., Kyrmanov, O., & Skalsky, V. (2021). ADDITIONAL CHARACTERISTICS OF HYBRID COMPOSITES FOR FILLING TEETH UNDER LOCAL MOUNTING CLOCKS. Ukrainian Dental Almanac, (3), 29-36. https://doi.org/10.31718/2409-0255.3.2021.04
Section
THERAPEUTIC DENTISTRY